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Abstract

Imaging systems are always multivariate, typically
involving response functions which relate lightness and
intensities, and sometimes even families of functions, that
must be optimized to produce the best possible images.

A preferred method for minimizing the work involved
in empirically optimizing a product or process is that of
“designed experimentation”.

Until recently there has been no widely accepted
method that enabled the application of designed
experimentation to multivariate problems, and therefore to
imaging products and processes. All this is changed with
the advent of the desktop computer. We will describe a
surprisingly simple and powerful, though computationally
intensive, method for optimizing multivariate systems and
imaging systems through use of quality loss functions and
designed experiments. In addition to a better product, the
method discussed will produce a more robust manufacturing
process as well.

Summary of Major Topics in the Talk

• Introduction, History, and Motivation
• The origin of the univariate quality loss function

“Good” and “Bad” characteristics
Taguchi: Any departure of a characteristic from nominal
creates economic loss, and the greater the departure, the
greater the loss.

• Representing quality mathematically
• Extension of the univariate quality loss function to

multiple variables
(Quality loss function need not be complete to be
useful!)

• Designed Experimentation and Response Surface
Methodology
(Statistical method for efficiently relating inputs to
outputs)

• Defining the quality loss function in terms of process
inputs

Some differences between “classical” experimental design
and experimental design for use in quality loss functions.

Classical modeling
(You don’t need to use designed experiments to use 
loss functions for optimization.)

• Optimizing a process or product with loss functions
• Robustness Characteristics of optimization with loss

functions
• Implementation Notes

Construction of Loss Functions
The Need for Higher Order Designs
Optimizations with RSM and with Loss Functions.
Minimizing QLP on the Computer

• Review

Introduction, History and Motivation

(Many of the details of this talk may be found in a paper
accepted for publication in the Journal of Quality
Technology sometime in 1997.)

All of us have to deal with optimization problems in
our daily lives, such as, “How do I get enough exercise and
still get all my work done?” or “How do I save money for
retirement, and still have some fun?”

Many in this audience have had to deal with industrial
optimization problems such as making the best hard copy
print with the least dye, or maximizing an output of a
chemical reactor while minimizing the cost of ingredients.

The kinds of optimization problems we focus on in this
talk are those where (a)the process is reasonably well defined
(say, a chemical manufacturing process) with a dozen or
fewer continuously variable inputs and (b) there is a large
number of output variables (a dozen or more variables, or a
sampled function) that must be controlled to sustain product
quality.

The particular problem that led to this paper arose in
the manufacture of Polaroid Spectra® instant photographic
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film. A Polaroid instant picture includes three components
that are primarily chemical in nature: the negative, the
reagent, and the positive sheet coatings. When the color
negative is manufactured, its properties may be perturbed by
variations (usually due to raw materials) so that, with no
subsequent adjustments, the final pictures would show
unacceptable run to run variations.

The cure for this problem, implemented since the days
of the first Polaroid instant photographic products, was to
adjust the composition of the reagent—the chemicals in the
pod that are activated as the picture leaves the cameraso as
to compensate for the variation in the negative. In those
early days, adjustment of the chemistry was accomplished
using a combination of experimentation and experience. As
products evolved in complexity and improved in overall
quality, the adjustment process became more complex, and
in 1984 we began to hunt for more automatic methods of
performing the adjustment.

We will describe here the most successful strategy that
we found to cope with the problem. The first experiments
on optimization using loss functions based on response
surfaces derived from designed experiments were done in
1984. To give you some idea of how valuable the approach
as been, By early 1994 well over 500 sets of designed
experiments for multiple response optimization had been
successfully completed.

Capsule Summary of Talk

 At this point, we state the bottom line.
If the problem is, “How do we adjust a complex
manufacturing process to achieve highest product
quality and greatest process robustness?”

The proposed solution is:
1) Use experience or designed experiments in screening
mode to isolate the input variables that have the most
control over the worst quality problems.
2) Use higher order designed experiments to construct
response surfaces for all significant process responses or
characteristics.
3) From the response surfaces, construct quality loss
functions to measure the loss due to departures from
target in terms of process inputs.
4) Finally, find minima of the quality loss function
with respect to the process inputs. These minima are
the operating conditions of highest quality (least
quality loss) and greatest process robustness.

Beginning of Explanation: The Univariate Loss
Function

There was once a time in American manufacturing when
it was believed that, for the most important characteristics of
a manufactured part, there was a “band of acceptability”.
Within this band the product was “good” and outside the
band the product was “bad”. A mechanical part either fit or
it did not fit.

The “good” / “bad” classification worked for the Model
T assembly plant mostly because the manufacturer’s job
was to get the automobile out the door of the factory. After
that it was the customers problem. The notion of “failure

probability” was not generally understood. The belief in the
utility of a region of acceptable variation prevailed for many
years.

To help change the “good vs. bad” mindset, Genichi
Taguchi introduced the loss function as a way to model the
concept that any departure from intended targets, however
small, creates economic loss. The Taguchi loss function
qualitatively describes the “economic loss to society”
arising from errors of all sorts in hitting a target, including
random variation from inside and outside the process as well
as systematic errors in the process.

Representing Quality Mathematically
Conceptually at least, one way of representing quality

mathematically is to estimate the economic loss due to
departure from target values of any particular parameters.
When we talk about a quality loss function in this paper,
usually we mean something proportional to the function that
describes the “economic loss to society” of variation from
specification.

Multivariate Quality Loss Function
Let us assume that the economic loss function

associated with each characteristic of a product can be
estimated for each use of the product. Then for a variety of
independent uses of a product the losses can be weighted
and summed to find the total loss to society for all variation
of the product characteristics. Even where we cannot state
exactly what the dollar loss associated with a deviation from
target value is, we can make estimates of the importance of
each target for maintenance of quality. With these estimates
we can combine the separate responses into a single loss
function which can be used for process optimization.

Response Surface Methodology and Designed
Experiments

Assume for the moment we have some sort of batch
chemical manufacturing step. Imagine we could write an
equation which described the yield of the chemical reaction
as a function of batch temperature and the concentration of
two ingredients, C1 and C2. The result would be a function
with dependent units of moles, which varied with
temperature, C1, and C2. This function is a surface
embedded in the space (moles, temperature, C1,C2).

In many cases we do not know the exact relation
between our input and output variables, so we must
approximate the response function using experimental data.
To this end, we assume some sort of polynomial model,
run some experiments, then least squares fit the data to the
model.

The methods devised to experimentally determine
coefficients in an assumed model most efficiently are called
“designed experiments”, because the experiments are
designed to capture the maximum amount of needed
information from a minimum number of runs.

Methods in which response surfaces are estimated using
designed experiments are called “response surface
methodology”, or RSM.

For constructing quality loss functions, unlike
conventional response surface methodology, we generally do
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not look at the significance levels of individual coefficients
within the response surface polynomial. What we do care
about is the accuracy of the predictions made about the
product performance. This estimate cannot be made until we
have constructed a complete loss function which includes all
variables, not just some of them.

The thing to remember here is that response surface
methodology will assist you in forming simple polynomial
models of the process responses .

Let’s return now to quality loss functions.

Quality Loss Function:; The Global Quality Loss
Function

To help clarify our thinking, we imagine first the global
quality loss function GQL, which describes the loss of
product quality and product value as various characteristics
of the product depart from their specified, or target, values.
The function we write down does not describe the quality
loss of the product, but rather uses a parabolic
approximation for the loss of quality due to deviation of
responses from their targets. We recognize that each
characteristic, Vr, may vary from the fixed target, T r,

because of both random variation and systematic errors or
design compromises. The global quality loss function GQL
in terms of measured responses is:

GQL = Σ Wr { V r - Tr }
2 (1)

            r = 1,Rg

Here, Vr is a measured response indexed on r, Tr is the

target or value of Vr at optimal quality, and Wr is a weight

factor. The sum is taken over all of the responses that
contribute to product quality, Rg in number. The weight
factors Wr are scaling parameters that relate squared error in

hitting the target to economic or quality loss.

Process Related Quality Loss Functions
The next step is to shift our thinking from outputs to

inputs by expressing the output variables that define quality
in terms of the process input variables.  This leads us to the
process related quality loss function, GQLP.  To actually
construct this function, we need RSM or other modeling
method to create a quantitative models for each response.
We can then approximate the quality of the final product as
a function of the process inputs.

If the process inputs are (X1, X2, - - ) and the model for

the response Vr is expressed as a function of these inputs as

Yr(X1, X2, - - ) then we write equation 2 to replace 1:

GQLP= Σ Wr { Y r (X1, X2, - - ) + er - Tr }
2 (2)

r = 1,R
In equation 2, Yr(X1, X2, - - ) is the function of the inputs

describing the response Vr and er =  V r -  Y r is the error,

both systematic and random, associated with the regression
description in terms of inputs rather than in terms of
responses. R is the number of process variables for which we
can usefully identify a response surface polynomial Yr.  R

differs from the Rg in eq. 1 because it is not always

appropriate to find response surfaces for all process response
variables.

If the errors, er, are small compared to the errors in

hitting the targets, (Yr - Tr) , we can neglect er and rewrite

GQLP as:

QLP = Σ Wr { Y r (X1, X2, - - ) - Tr }
2 (3)

        r = 1,Rg

At this stage we have three loss functions to think about.
The first, eq. 1, is the complete loss function applicable to
all quantifiable characteristics of the product. The second
loss function, eq. 2, includes a subset of the responses in eq.
1 for which response surfaces can be identified. Finally in
eq. 3 we include only response polynomials and targets, and
do not explicitly include random errors.

Process Optimization with GQLP and QLP
So long as the random effects in the process are

independent of the process inputs, or alternatively so long as
the dominant loss of quality arises from systematic errors in
hitting targets, then the minima of the process input related
quality loss function, GQLP, occur at particular values of
the inputs (Xr, X2, - - ). These minima define the process

operating conditions that result in the least amount of
quality loss for the process or product.

Robustness Characteristics
Another characteristic of the minima of GQLP comes

from the definition of “minimum”.  At a minimum the rate
of change of a function with respect to change in the inputs
is zero. This raises a point of some significance: the set of
process inputs which produces the highest quality also
produces the greatest stability or robustness against
variations in quality due to input variation.

Construction of Loss Functions
One of the difficulties of the proposed method is the

lack of an obvious objective basis for choosing the weight
factors, the Wr.  In most practical situations, one cannot

realistically estimate the “loss to society” of a departure
from specification. One strategy is to find factors which will
eliminate the units of measure of the squared error, that is,
scale so that the “usual error” will have a value of unity,
then subsequently assess the relative importance of each of
these nondimensional squared error.  Another method might
be to scale the squared error by its expected value based on
independent criteria, perhaps experimental error, then choose
a multiplier of the scaled value which expresses the
contribution to quality loss. This method produces a
quality weighted net variance for the process. Other
strategies could compare deviations from target to control
limit ranges, or other process control variables.

For many imaging systems it is feasible to do testing of
computer generated images with panels of viewers to find
the comparative importance of various imaging errors.
Whatever strategy is employed, keep in mind that the
weight factors are the means to the end of finding the best
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process settings, and insofar as the targets can be hit, the
weight factors are irrelevant.
 For constructing loss functions in which a response
must be maximized or minimized, we have successfully
used the half parabola method of Tribus and Szonyi (1989).
This method has the advantage over step functions in that it
maintains continuous first derivatives which can be
important for finding the optima numerically. Broad regions
of acceptability that are not well described with a single
parabola can be described with split parabolas.

Comments on the Need for Higher Order Designs
As use of loss functions for optimizing processes

becomes more sophisticated, and both more outputs and
more inputs are considered, the basic probability of finding
important nonlinear interactions increases.

Similarly, as the process becomes more capable and
errors get smaller, the probability increases that interactions
between the inputs will be observed as significant.

Assessment of nonlinearities requires higher order
designs, that is, experimental designs that can provide
estimates of quadratic, or sometimes even higher, power
coefficients within the response surface polynomial.

The key point is that for multivariable optimizations,
the user should anticipate encountering non-linear effects and
interactions which must be supported by the basic
experimental designs.

For fitting a second-degree polynomials we have found
the central composite designs to be particularly useful.

Some Differences Between Optimizations with RSM and
with Loss Functions.

It is conventional in response surface methodology
(RSM) to subject each coefficient in the polynomial
describing the surface to a test for significance and to justify
the use of the coefficient in the final regression. Our initial
implementation using designed experiments leading to
RSM’s and then to loss functions implemented this
practice. During our pilot studies we initiated a search for
the significance levels that gave us the best predictions.
After extensive testing and many heated discussions we
concluded that the most reliable predictions were obtained
when all coefficients were retained in the highest order
design judged necessary by a knowledgeable experimenter.
The statistician may ask, How could this be? Is not over
paramaterization undesirable? For loss function minimi-
zation the answer seems to be “no, over parameterization is
not harmful.” While we are not yet certain, there may be
two explanations. One is that for loss function
minimization, the role of the response surface is simply to
represent the experimental data, noise and all, and the more
terms that are available from the regression to accomplish
the representation, the better will be the final representation.
A second explanation is that in the construction of a single
loss function from a large number of individual surfaces,
useful noise averaging effects outweigh errors introduced by
overparameterization. For the reagent matching work, we
estimate that we have roughly three times as many data
points as there are independent responses, so the overall
significance within the loss function of coefficients that are

similar across multiple experiments gets higher with each
experiment included in the loss function.  A coefficient
which might be judged insignificant for any one experiment
can become extremely significant if it appears consistently
within the responses most important at the loss function
minimum.

Minimizing QLP on the Computer
Finding the minima of eq. 3 with respect to the process

inputs requires the use of a computer. Possible methods
range from simple “steepest ascent” method.to elaborate
forms of Newton’s method. [Chapter 8 of Fiacco and
McCormack]. Dixon has useful material, and Aubin
addresses directly the issue of loss function minimization.

Summary

We have presented a novel and powerful method for dealing
with a problem frequently encountered in the manufacture of
complex products, that of process tuning where multiple
criteria must be met to achieve highest product quality. The
basic strategy is to describe the response surfaces with
experimentally derived polynomials which can be combined
into a single loss function using known or desired targets.
Minimizing the loss function with respect to process inputs
locates operating conditions which produce the product of
highest quality, and most stability.
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